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Resumen 

Esta investigación tuvo como objetivo desarrollar modelos de aprendizaje automático (ML) para 
estimar el consumo de potencia (Kw) en un molino Semi-autógeno en la industria minera. 
Empleando algoritmos de Machine Learning considerando diversas variables operativas para los 
diferentes modelos como se incluyen el Regresión Lineal Múltiple (RLM), Regresión Árbol de 
Decisiones (RAD), Regresión Bosque Aleatorio (RBA) y Regresión Redes Neuronales Artificiales 
(RRNA). La metodología adoptada fue de tipo aplicado, con un diseño experimental de enfoque 
descriptivo y transversal. Los resultados de la aplicación de estos modelos revelaron diferencias 
significativas en términos de eficiencia predictiva. El RLM y la RRNA destacaron con coeficientes 
de determinación (R²) de 0.922 y 0.939, respectivamente, indicando una capacidad sustancial 
para explicar la variabilidad en el consumo de potencia. En contraste, los modelos basados en 
árboles (RAD y RBA) mostraron desempeño inferior, con R² de 0.762 y 0. 471. Al analizar 
métricas clave como el Error Absoluto Medio (MAE), el Error Cuadrático Medio (MSE) y la Raíz 
del Error Cuadrático Medio (RMSE), se confirmó que tanto el RLM como la RRNA superaron a 
los modelos basados en árboles. Estos resultados respaldan la elección de RLM y RRNA como 
modelos preferidos para la estimación del consumo de potencia en un molino Semi-autógeno. 
 
Palabras clave: Machine Learning, molino Semi-autógeno, potencia (kW). 
 

Abstract 
This research aimed to develop machine learning (ML) models to estimate power consumption 
(Kw) in a Semi-autogenous mill in the mining industry. Using Machine Learning algorithms 
considering various operating variables for the different models such as Multiple Linear 
Regression (RLM), Decision Tree Regression (RAD), Random Forest Regression (RBA) and 
Regression Artificial Neural Networks (ANN). The methodology adopted was applied, with an 
experimental design with a descriptive and transversal approach. The results of the application 
of these models revealed significant differences in terms of predictive efficiency. The RLM and 
RRNA stood out with coefficients of determination (R²) of 0.922 and 0.939, respectively, indicating 
a substantial capacity to explain the variability in power consumption. In contrast, the tree-based 
models (RAD and RBA) showed inferior performance, with R² of 0.762 and 0.471. When analyzing 
key metrics such as Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Root Mean 
Square Error (RMSE), it was confirmed that both RLM and RRNA outperformed the tree-based 
models. These results support the choice of RLM and RRNA as preferred models for estimating 
power consumption in a Semi-autogenous mill. 
 
Keywords: Machine Learning, Semi-autogenous mill, power (kW). 
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1. Introduction 
 
In recent years, advances in sensor technology, data logging and storage strategies have resulted 
in the accumulation of a significant amount of production data in the databases of mineral 
processing facilities. Despite this, these valuable data repositories are rarely leveraged effectively 
to improve process modeling. Machine learning techniques have the ability to use this vast 
amount of data and generate predictive models by identifying patterns within the information 
(Murphy, 2022). 
 
Efficient energy consumption is crucial in mining operations, especially in mineral processing. 
Crushing mills, responsible for up to 50% of a plant's electrical consumption, are particularly 
energy intensive (Hoseinzade et al., 2023). Improving the prediction of mill energy demand based 
on operational variables is an area of growing interest. (Peng et. al., 2023; Loor, 2020). 
In mineral processing plants, the grinding stage becomes crucially important, accounting for 
approximately half of all costs associated with mineral processing (Wills and Finch, 2015). The 
semi-autogenous mill (SAG) is the main equipment used in this task, recognized for its economic 
efficiency by grinding large quantities of input material and occupying a reduced physical space 
(Codelco, 2019). The concept of "power" is directly linked to the amount of energy necessary to 
grind the mineral. This term plays a fundamental role in understanding and optimizing SAG mill 
performance, as it is intrinsically linked to the efficiency of the grinding process (Lopez et al., 
2021). 
 
The measurement and analysis of power in a SAG mill are key elements to adjust operations and 
achieve an optimal balance between grinding efficiency and energy consumption (Rosas, 2021). 
This focus on power, commonly expressed in kilowatts (kW), is evaluated by considering various 
operating parameters, such as mill load, mill speed, and specific mineral properties. Thus, power 
optimization in a SAG mill becomes an essential component to improve the profitability and 
sustainability of mineral processing operations (Salazar et al., 2014). 
 
Various studies have explored the viability of predictive models for mill energy consumption, both 
at laboratory and industrial levels (Jayasundara et al., 2022; Heredia, 2016). These studies 
highlight the potential of machine learning techniques to model the complex and non-linear 
behavior of these teams, using algorithms such as multiple linear regression, Decision Tree, 
Random Forests and neural networks. (Venkata et al., 2024; Ghasemi et al., 2024) 
 
These models incorporate critical operating variables, such as diameter, RPM and power, along 
with additional external variables. (Jayasundara et al., 2022). Having tools for accurately 
estimating energy consumption would allow short-term optimization of equipment and long-term 
planning of concentration plants. (Zou et al. 2023; Castro and Valenzuela, 2022). The aim is to 
develop and validate models of this type using real operational data from mills, focusing on the 
power used to determine energy consumption (Loudari et al., 2023). The objective of this research 
is to develop and validate predictive models based on Machine Learning algorithms, for the 
estimation of power consumption (kW) in a Semi-autogenous mill, incorporating multiple relevant 
variables, in order to improve energy efficiency and optimize operational performance in the 
grinding process. 
 
 
2. Materials and Methods 
 
2.1 Materials 
For the purpose of carrying out this research, a specialized set of both hardware and software will 
be used. PCs with high processing performance to manage large volumes of data and execute 
machine learning algorithms. On the software side, Artificial Intelligence platforms and tools will 
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be used, supported by specific libraries for machine learning in Python, such as TensorFlow or 
Scikit-Learn. This will allow you to take advantage of the flexibility and effectiveness of the Python 
language in the development of predictive models and data analysis for the proposed research. 
(Jung and Choi, 2021; Fu and Aldrich, 2020). The population, as seen in table 1, was made up of 
the performance record of a semi-autogenous mill. 
 

Table 1: Database of the semi-autogenous mill 
 

Download type Diameter (m) Length without cone (m) Total lenght (m) RPM ø fb f Po (g/cm3) Power (kW) 

Slit 3.85 5.69 5.69 10.35 0.48 0.12 0.12 2.8 404 
Slit 3.9 5.1 5.1 16.75 0.78 0.25 0.34 3.35 1175 

Slit 4.05 4.6 4.6 15.97 0.76 0.6 0.32 2.7 687 

Slit 4.05 4.6 4.6 15.97 0.76 0.6 0.34 2.7 706 

Slit 4.05 4.6 4.6 15.97 0.76 0.7 0.7 2.7 440 

Slit 4.05 4.6 4.6 15.97 0.76 0.8 0.26 2.7 688 

Slit 4.12 5.02 5.02 15.63 0.75 0.22 0.22 2.7 1012 

Slit 4.12 5.02 5.02 15.63 0.75 0.22 0.33 2.7 1225 

Slit 4.16 4.78 4.78 18.45 0.89 0.1 0.38 2.7 1063 

… … … … … … … … … … 

 
 
2.2. Procedure 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Flowchart of the proposed methodology. 

 

The step-by-step process, as seen in the flow chart of the proposed methodology in Figure 1, 

begins with the preprocessing and cleaning of data, ensuring that the information is clean, 

relevant and structured appropriately for analysis. After them, exploratory data analysis (EDA) is 

carried out, helping us to identify patterns, trends and anomalies. This hassle-free approach is 

essential in the initial stages of data analysis, providing a solid foundation for more advanced 

analytical decisions. Next, the design of the 4 algorithms used for this article is developed, 

applying Multiple Linear Regression (RLM), Decision Tree (AD), Random Forest (RF) and neural 

network (RD), once each one has been designed with its hyperparameters. and appropriate 
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libraries for each algorithm, where the data was divided for the training set 0.8 and test 0.2, the 

training for each model is determined differently from each other, adjusting its parameters, so that 

finally the 4 algorithms give us the evaluation of performance such as the Mean Absolute Error 

(MAE), Mean Square Error (MSE), Root Mean Square Error (RMSE) and Coefficient of 

Determination (R2) and to finish choosing the most robust model according to its algorithm 

(Khalifa et al., 2021; Jooshaki et al., 2021). 

 
2.3 Methods 
The methodology adopted was applied, with an experimental design with a descriptive and 
transversal approach. Besides. A supervised machine learning methodology was adopted, given 
its effectiveness in prediction based on historical data. In this approach, four algorithms are 
trained using a set of labeled data, meaning that each data input comes with a corresponding 
output (Toro, 2023). 
 
Multiple linear regression uses several variables to predict a dependent one, assuming linear 
relationships. Decision trees build hierarchical structures based on data, useful for non-linear 
problems and easy interpretation. Random forests are ensembles of trees that combine 
predictions, robust and effective on large data sets. Neural networks, inspired by the brain, learn 
complex patterns through interconnected layers. The choice depended on the nature of the 
problem and the specific data (Howard and Gugger, 2020). 
 
 
3. Results  
 
3.1. Data collection 
To carry out the Exploratory Data Analysis (EDA), we initially proceeded to detect null values, of 
which none were found, and then to generate a table that presents the descriptive statistics of the 
variables selected in the database. Priority was given to those columns considered most relevant 
for the construction of the predictive model. This table provides an overview and detailed overview 
of the key characteristics of the variables, providing an essential information base for the 
subsequent analysis and modeling phase. Table 2 presents detailed descriptive statistics of 
various relevant variables. The data were obtained from 29 observations and provide crucial 
information about the characteristics and performance of the study sample. 
 

Table 2 Descriptive statistics performed on each variable 
 

Variable conteo mean std min 25% 50% 75% máx 

Diameter (m) 29 6.21 2.08 3.85 4.12 5.82 7.23 10.2 

Length without cone (m) 29 4.48 1.29 2.42 3.66 4.6 5.02 7.95 

Total lenght (m) 29 4.90 1.43 2.44 3.66 5 5.86 7.95 

RPM 29 13.13 2.42 10.09 11.23 12.38 15.63 18.45 

ø 29 0.74 0.07 0.48 0.71 0.75 0.77 0.89 

fb 29 0.27 0.22 0.1 0.12 0.17 0.3 0.8 

f 29 0.26 0.11 0.11 0.19 0.25 0.31 0.7 

Po (g/cm3) 29 2.83 0.33 2.6 2.68 2.7 2.8 4.1 

Power (kW) 29 2589.14 2473.41 404 1063 1800 2840 10013 

 

 

As seen in Table 2, it stands out that the standard deviations associated with these variables are 
relatively small, suggesting a certain cohesion and consistency in the data collected. This 
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phenomenon indicates less dispersion around the means, which can be essential in predictive 
analysis. Special attention was paid to the variable to be predicted, Power (kW), and histogram 
and density plots were carried out to examine the distribution of its values. These graphs provide 
a detailed visual representation that makes it easier to understand the variability and patterns 
associated with this key variable in the context of the predictive model. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Power density histogram (kW) with vertical line of the mean and median 
 
Figure 2 shows the histogram of the Power variable in kW, which is intended to be predicted using 
the developed models. It can be seen that the distribution does not follow a normal shape, 
presenting a positive asymmetry with an elongated tail towards the high values. This distribution 
is confirmed with the skeweness and kurtosis values greater than 0 reported in Table 3. Likewise, 
the figure includes vertical lines indicating the mean and median power, located at 2589.14 kW 
and 1800 kW respectively. A separation between the two is denoted, corroborating the absence 
of normality in the data due to the greater influence of the high extreme values on the mean. 
 

Table 3. Asymmetry and kurtosis of the variable to be predicted Power (kW). 
 

Parameter Power (kW) 

Skewness  1.69 

Kurtosis 2.17 

 

Table 3 reports the statistical metrics of skewness and kurtosis for the dependent variable Power 
in kW. An skewness coefficient of 1.69 was obtained, indicating the presence of a positively 
skewed distribution with a longer tail towards high values, as was also seen in Figure 2. On the 
other hand, the kurtosis value of 2.17 indicates a leptokurtic distribution more pointed than normal, 
with power values grouped around the average and decreasing rapidly towards the tails. These 
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distribution shape indicators corroborate the non-normal and positive asymmetric behavior of the 
Power variable, validating the need to apply machine learning algorithms capable of adequately 
modeling these complex patterns to improve prediction. 
 
The distribution histograms in Figure 3 confirm the non-normal behavior of the variables, with 
positive biases in RPM, density and power; as well as multimodal distributions in the dimensions 
of the mills. These complexities reinforce the suitability of using machine learning algorithms. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Distribution histograms for all variables 
 
The different scatter diagrams reveal non-linear relationships between the independent variables 

of the process and the power in the mills. Curvatures and groupings are seen that show more 

complex interactions. This highlights the convenience of implementing machine learning 

techniques, which can model these intricate associations between multiple predictors and the 
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electrical power response variable, having the most variable variable “ø” in its scatter plot, where 

its values are 0.65. to 0.85 as for the value to be predicted, it varies from 0 to 10,000 according 

to the Power (kW). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Scatter diagrams of each variable with the variable to be predicted Power (kW) 
 
The different scatter diagrams reveal non-linear relationships between the independent variables 
of the process and the power in the mills. Curvatures and groupings are seen that show more 
complex interactions. This highlights the convenience of implementing machine learning 
techniques, which can model these intricate associations between multiple predictors and the 
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electrical power response variable, having the most variable variable “ø” in its scatter plot where 
its values range from 0.65 to 0.85 as for the value to be predicted, it varies from 0 to 10,000 
according to the Power (kW). 
 
In the variable correlation analysis, in Figure 10, significant relationships were identified. On the 

one hand, a strong positive correlation was found between the total length and the length without 

cone. However, a strong negative correlation was observed between RPM and diameter, 

indicating that RPM is given and managed well with respect to the diameter of rock entering the 

mill. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. General correlation matrix 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Ordered general correlation matrix centered on the Power variable (kW) 
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On the other hand, when the correlation matrix is centered on the variable to be predicted, this 
matrix is ordered and there is a better correlation as seen in Figure 6, having a positive increase 
in the ratio of 0.85 according to the diameter and the power, therefore, is the relation given that 
the power is also affected by the diameter of each rock that enters the mill. On the other hand, 
for the negative correlation we have -0.81 between the RPM variable. and diameter. 
 
3.1. Multiple Linear Regression Model (RLM) 

Figure 6 shows us an ideal scenario, since the model predictions would be perfectly aligned with 
the real values. This is seen in a graph where all the points fall on the diagonal line, known as the 
"perfect prediction line." In the lower part of 1000 to 4000 there is minimal dispersion around this 
line, which means that the model is making accurate predictions and fits the data well. The point 
found at 8000 of the diagonal line is a little far away in the final part. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Predictions vs. Graph Real Values of the RLM model 
 
shows us an ideal scenario, since the model predictions would be perfectly aligned with the real 
values. This is seen in a graph where all the points fall on the diagonal line, known as the "perfect 
prediction line." In the lower part of 1000 to 4000 there is minimal dispersion around this line, 
which means that the model is making accurate predictions and fits the data well. 
The residuals would be distributed around zero uniformly, showing no discernible patterns. As 
seen in Figure 7 it resembles a normal distribution, with the majority of the residuals concentrated 
near zero and decreasing symmetrically towards the negative end ranging from - 1450 to - 1150 
and having more quantity at the positive end that ranges from 250 to 520. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Graphs of the residual distribution of the RLM model 
 

http://www.journals.cincader.org/
https://doi.org/10.32829/eesj.v8i1.207


EESj 

Journal of Energy & 

Environmental Sciences 

A publication of 

 CINCADER 

Vol. 8, N° 1, 2024  Centre of Research and Training for 
Regional Development 

Online at www.journals.cincader.org 
 

 

Copyright © 2024, CINCADER. 

ISSN 2523-0905 
DOI: https://doi.org/10.32829/eesj.v8i1.207  

 

 23 
 
 

 

The multiple linear regression model (RLM) presents promising results as seen in Table 4 
according to the evaluation metrics. The mean absolute error (MAE) is 504.070, indicating 
acceptable precision in the predictions. The root mean square error (RMSE) is 681.874, which 
suggests a good fit of the model to the data, considering the magnitude of the errors. The mean 
square error (MSE) reveals a value of 464951.677, providing an additional measure of the model's 
accuracy. Furthermore, the coefficient of determination (R²) stands out at 0.922, indicating that 
the model explains approximately 92.2% of the variability in the dependent variable of power 
(kW). 
 

Table 4. Result of the RLM model with evaluation metrics 
 

Evaluation metrics Value 

MAE 504.070 

MSE 464951.677 

RMSE 681.874 

R² 0.922 

 

 

These metrics support the effectiveness of the RLM model in predicting the target variable, with 
low levels of error and substantial ability to explain variability in the data. These results support 
the validity and usefulness of the proposed model, providing a solid basis for its practical 
application and analysis in the context of the study. 
 
3.2. Regression decision tree model (RAD) 

These values were selected through a search process that maximized the model evaluation 
metrics. Limiting the tree depth (max_depth) to 3, along with the criteria of minimum samples to 
split and in a leaf, contributes to a more generalizable model and less prone to overfitting. The 
random seed provides reproducibility in the results. 
 
These hyperparameters represent an effective balance between model complexity and 
generalization ability, suggesting a robust fit of the RAD predictive model to the data of interest. 
 

Table 5: Best hyperparameters found for pruning used for the RAD predictive model. 
 

Evaluation metrics Value 

max_depth 3 

min_samples_split 5 

min_samples_leaf 2 

random_state 0 

 

 

Figure 8 shows the decision tree created for the RAD predictive model. It is a binary tree with a 
maximum depth of 3 levels, according to the established hyperparameter. Each sheet represents 
conditions on attributes X that predict an output value ŷ. 
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Figure 8. Structure of the tree created for the RAD model 
 
Figure 9 shows a scenario in which the values are one further apart than in the multiple linear 
regression model. This is seen in a graph where all points are referenced near the diagonal line, 
known as the "perfect prediction line." In the range from 1000 to 4000, minimal scatter is observed 
around this wax line 1000 to 2000, which means that the model is making efficient predictions. 
And in the final part approaching the value 8000 and sticking to the diagonal line. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Predictions vs. Graph Real Values of the RAD model 
 
For RAD the residuals would be distributed around zero uniformly, as seen in Figure 10 it 
resembles a normal distribution, with the majority of the residuals concentrated near zero and 
decreasing symmetrically towards the negative end that ranges from -1450 to - 500 and having 
more quantity at the positive end that ranges from 1250 to 2100. and with the curve pronounced 
at 0. 
 

 

 

 

 

 

 

 

 

 

 

Figure 10. Graphs of the distribution of residuals of the RAD model 
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In Table 6, the RAD model presents a positive performance, evidenced by the MAE of 838.233, 
MSE of 1,206,564.250, RMSE of 1,098.437 and an R² of 0.762. These metrics indicate that 
precision with respect to the RLM has dropped to 76.2%, even though it is in optimal conditions 
for predicting the variable to be predicted. 
 

Table 6. RAD model result with evaluation metrics 
 

Evaluation metrics Value 

MAE 838.233 

MSE 1206564.250 

RMSE 1098.437 

R² 0.762 

 

 

3.3. Decision tree regression model (RBA) 

Figure 11 shows that the error decreases as trees are added, but reaches a stabilization point 
around 155 trees. After that, these graphs represent limits for the search for the best values of 
the hyperparameters of the forest, as can be denoted by 85 as the min score, as a minimum and 
maximum 7 and 8. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Graphs to find the best hyperparameter values of the RBA model. 
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After the cross-validation process, the optimal hyperparameters for the Random Forest (RBA) 
predictive model were identified. These parameters include a maximum depth of 3, a maximum 
of 8 features per split, 155 estimators in the forest, utilization of all available cores for parallel 
work, and a random seed set to 0. This configuration was selected with the goal of achieve a 
balance between efficiency and generalization of the model. 
 

Table 6. RAD model result with evaluation metrics 
 

Evaluation metrics Value 

max_depth 3 
max_features 8 
n_estimators 155 

n_jobs -1 
random_state 0 

 

Figure 12 shows a scenario in which the values are one further apart than in the multiple linear 
regression model. This is seen in a graph where all points are referenced near the diagonal line, 
known as the "perfect prediction line." In the part varying from 1000 to 4000, minimal scatter is 
observed around this 0 to 4000 wax line, which means that the model is making efficient 
predictions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Predictions vs. Graph Real Values of the RBA model 
 
For RBA the residuals would be distributed around zero uniformly, as seen in Figure 13 it 
resembles a normal distribution, with the majority of the residuals concentrated near zero and 
decreasing symmetrically towards the negative end that ranges from -2100 to - 700 and having 
more quantity at the positive end that ranges from 2100 to 3500. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Graphs of the residual distribution of the RBA model 
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The RBA model presents performance with evaluation metrics that reveal acceptable accuracy. 
With a MAE of 1319.871, MSE of 2,680,691.792, RMSE of 1637.282, and a coefficient of 
determination R² of 0.471, the model demonstrates its ability to make predictions in relation to the 
target variable. These metrics indicate some variability in the predictions, and although the model 
offers useful information, it is recommended to consider possible adjustments to further improve 
its performance. 
 

Table 6. Result of the RBA model with evaluation metrics 

 

Evaluation metrics Value 

MAE 1319.871 
MSE 2680691.792 

RMSE 1637.282 
R² 0.471 

 

 

3.4. Decision tree regression model (RRNA) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. Structure of the RRNA 
 
As seen in both Table 9 and Figure 14. Structure of the RRNA, the design of the neural network 
consists of a multi-layer architecture, with an input layer of 8 neurons, followed by four hidden 
layers with 8, 40, 50 and 25 neurons respectively, and finally, an output layer with a single neuron. 
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Each connection between neurons has associated weights that determine the strength and 
direction of the connection according to its developed parameters. 
 

Table 9. Architecture of the Artificial Neural Network used 
 

Layer (type) Output form Parameters 

Input layer (Dense) (None, 8) 72 
Hidden layer 1 (Dense) (None, 40) 360 
Hidden layer 2 (Dense) (None,50) 2050 
Hidden layer 3 (Dense) (None, 25) 1275 
Output layer (Dense) (None, 1) 26 

 

 

In Table 10 The neural network was trained for 900 epochs with a batch size of 30 samples per 
iteration, using the Adam optimizer and the mean squared error loss function. In the hidden layers, 
the ReLU activation function was implemented. These configurations were strategically chosen 
to facilitate efficient and rapid learning, with emphasis on optimizing model performance for the 
specific task. 

Table 10. Best hyperparameters for the RRNA predictive model 
 

Evaluation metrics Value 

epochs 900 
batch_size 30 
optimizer adam 

loss mean_squared_error 
Activation relu 

 

Figure 15 shows a scenario in which the values are one further apart than in the multiple linear 
regression model. This is seen in a graph where all points are referenced near the diagonal line, 
known as the "perfect prediction line." In the part varying from 1000 to 2000, a minimum dispersion 
is observed around this line is 1000 to 2000, which means that the model is making efficient 
predictions. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15. Predictions vs. Graph Real Values of the RRNA model 
 
For RRNA the residues would be distributed around zero uniformly, as seen in Figure 16 it 
resembles a normal distribution, with the majority of the residues concentrated near zero and 
decreasing symmetrically towards the negative end ranging from -1000 to - 700 and having more 
quantity at the positive end that ranges from 10 to 350. 
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Figure 16. Residue distribution graphs of the RRNA model 
 
The RBA model exhibits outstanding performance, evidenced by strong evaluation metrics: MAE 
of 476.9051, MSE of 426,711.6176, RMSE of 653.2317, and a high coefficient of determination 
R² of 0.929. These results indicate notable precision in the predictions. 
 

Table 11. RRNA model result with evaluation metrics 
 

Evaluation metrics Value 

MAE 476.9051 
MSE 426711.6176 

RMSE 653.2317 
R² 0.939 

 

3.5. Comparison of all predictive models 

 
Table 11: Results of the different models used 
 

Evaluation metrics RLM RAD RBA RRNA 

MAE 504.070 838.233 1319.871 476.9051 

MSE 464951.677 1206564.250 2680691.792 426711.6176 

RMSE 681.874 1098.437 1637.282 653.2317 

R² 0.922 0.762 0.471 0.939 

 

The results highlight the superiority of the Multiple Linear Regression (RLM) model with an R² of 
0.922, indicating that 92.2% of the variability in power consumption is explained by the model 
variables. The Artificial Neural Network (ANN) also shows impressive performance with an R² of 
0.939. In contrast, the Decision Tree (RAD) and Random Forest (RBA) models exhibit inferior 
performance, with R² values of 0.762 and 0.471, respectively. 
 

 

4. Conclusions 
In conclusion, the results obtained from the different regression models used to estimate power 
consumption (kW) in a Semi-autogenous mill reveal valuable insights about the predictive 
efficiency and comparative performance of these techniques. The multiple linear regression 
model (RLM) stands out for its notable efficiency, evidenced by a high coefficient of determination 
(R²) of 0.922. This result suggests that 92.2% of the variability in power consumption can be 
explained by the variables included in the model. Similarly, the artificial neural network (ANN) 
demonstrates a significant ability to capture complex relationships, with an R² of 0.939, pointing 
to its suitability for addressing non-linear patterns in the data. 
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Regarding the evaluation metrics, the Mean Absolute Error (MAE) for RLM is 504.070, while for 
RAD and RBA it is higher, with values of 838.233 and 1319.871, respectively. In the case of 
RRNA, the MAE is the lowest, reaching 476.9051. Similarly, the Mean Square Error (MSE) is 
lower in RLM (464951.677) and RRNA (426711.6176) compared to RAD (1206564.250) and RBA 
(2680691.792). The Root Mean Square Error (RMSE) follows the same trend, being lower in RLM 
(681.874) and RRNA (653.2317) than in RAD (1098.437) and RBA (1637.282). These results 
support the choice of RLM and RRNA as preferred models for estimating power consumption in 
a Semi-autogenous mill. It is recommended to validate the models in real operational 
environments to support their usefulness in the mining industry. 
 
Given these demonstrated predictive capabilities of both RLM and ANN to model power 
consumption, the use of these Artificial Intelligence techniques in real industrial applications with 
SAG mills is especially recommended. Its performance must be validated in each case, but the 
results obtained so far confirm its suitability and usefulness so that mining operations can better 
predict and manage this key parameter. These results support the choice of RLM and RRNA as 
preferred models for estimating power consumption in a Semi-autogenous mill. It is 
recommended to validate the models in real operational environments to support their usefulness 
in the mining industry. 
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