Contribution of the species Pilea microphylia in the thermal comfort of a house [Contribución de la especie Pilea microphylia en el confort térmico de una casa]

Authors

  • Kevin Campos Poma Universidad César Vallejo.
  • Jhonny Valverde Flores Institute of Environment, Centro de Investigación y Capacitación para el Desarrollo Regional

Keywords:

Pilea microphylia, thermal comfort, covered roof, no covered roof

Abstract

The research presents the influence of the species Pilea microphylia on the thermal comfort of a house. The dimensions of the test were 2.8 m x 3.8 m x 2.5 m. The measurements were made in two rooms, a room with a roof covered by species Pilea microphylia and another room with a roof no covered. The experimentation was carried out during the months of October and November of 2018. The results show that the room with roof covered with the Pilea microphylia plant improved the thermal comfort of the room in week 5 (temperature of 20.07 °C and relative humidity 75.75%) than with the room with uncovered roof (temperature of 24.94 °C and relative humidity 82.90%). Therefore, it is concluded that the species Pilea microphylia improves the thermal comfort of the room with a temperature variation of 4.87 °C and an attenuation of the relative humidity in 7.15%.

Downloads

Download data is not yet available.

References

Beltrán, A., Vargas, M., Pérez, A., García, A., & Cruz, J., 2014. Confort térmico de techos verdes con Cissus verticillata (Vitaceae) en viviendas rurales tropicales [Thermal comfort of green roofs with Cissus verticillata (Vitaceae) in tropical rural homes]. Revista Mexicana de Ciencias Agrícolas. 9, 1551-1560. http://www.redalyc.org/pdf/2631/263137781003.pdf

Bevilacqua, P., Mazzeo, D., Bruno, R., & Arcuri, N. 2016, Experimental investigation of the thermal performances of an extensive green roof in the Mediterranean area, Energy and Buildings, 122, 63-79. https://doi.org/10.1016/j.enbuild.2016.03.062

Bevilacqua, P., Coma, J., Pérez, G., Chocarro, C., Juárez, A., Solé, C., De Simone, M., & Cabeza, L. 2015, Plant cover and floristic composition effect on thermal behaviour of extensive green roofs, Building and Environment, 92, 305-316. https://doi.org/10.1016/j.buildenv.2015.04.026

Bhellum, B.L. & Hamid, S. 2016, Pilea microphylla (L.) Liebm. (Urticaceae): a naturalised taxon for the flora of Jammu and Kashmir State, India. Curr. Trends Life Sci. 2, 55-57. http://dx.doi.org/10.5281/zenodo.56050

Blanusa, T., Vaz, M., Fantozzi, F., Vysini, E., Li, Y., & Cameron, R. 2013, Alternatives to Sedum on green roofs: Can broad leaf perennial plants offer better ‘cooling service’? Building and Environment, 59, 99-106. https://doi.org/10.1016/j.buildenv.2012.08.011

Duran, O., Taylor, S., & Lomas, K. 2015, The impact of refurbishment on thermal

comfort in post-war office buildings, Energy Procedia 78, 877-882. https://doi.org/10.1016/j.egypro.2015.11.011

Forero, C., Castillo, D., & Alfonso, C. 2011, Mejora de las condiciones de habitabilidad y del cambio climático a partir de eco techos extensivos: Estudio de caso: barrio La Isla, Altos de Cazucá, Soacha, Cundinamarca [Improvement of living conditions and climate change based on extensive roof echoes: Case study: La Isla neighborhood, Altos de Cazucá, Soacha, Cundinamarca]. Revista cuaderno de vivienda y urbanismo. 4, 8. http://revistas.javeriana.edu.co/index.php/cvyu/article/viewFile/5578/442

Gupta, R., Gregg, M., & Williams, K. 2015, Cooling the UK housing stock post-2050s,

Build. Serv. Eng. Res. Technol. 36, 196-220. https://doi.org/10.1177/0143624414566242

Humphreys, M. & Nicol, F. 2016, Outdoor temperature and indoor thermal comfort-raising the precision of the relationship for the 1998 database of field studies, ASHRAE Transactions, 106, 485-492. https://search.proquest.com/openview/2eacd513c1506a88e259382792338483/1?pq-origsite=gscholar&cbl=34619

Isaac, M., & Van Vuuren, D.P. 2009, Modeling global residential sector energy demand

for heating and air conditioning in the context of climate change, Energ

Policy, 37, 507-521. https://doi.org/10.1016/j.enpol.2008.09.051

Kidd, J. 2015. Optimum green roof for Brisbane. BSc dissertation for the University of Brisbane, Australia.

Matos, C., Flores-Colen, I., & Coelho, A. 2015, Green roofs in Mediterranean areas - Survey and maintenance planning, Building and Environment, 94, 131-143. https://doi.org/10.1016/j.buildenv.2015.07.029

Monro, A.K. 2001, Synopsis of Mesoamerican Pilea (Urticaceae), including eighteen typifications and a key to the species. Bull. Nat. Hist. Mus. London, Bot. 31, 9-25. https://www.biodiversitylibrary.org/page/2239176#page/2/mode/1up

Nagase, A., & Dunnett, N. 2014, Drought tolerance in different vegetation types for extensive green roofs: Effects of watering and diversity. Landscape and Urban Planning, 97, 318-327. https://doi.org/10.1016/j.landurbplan.2010.07.005

Peck, S., Callaghan C., Kuhn M. & Bass B. 2013. Greenbacks from green roofs: Forging a new industry in Canada. Status report on benefits, barriers and opportunities for green roof and vertical garden technology diffusion. Canadá. https://www.nps.gov/tps/sustainability/greendocs/peck-sm.pdf

Pisello, A.L., Piselli, C., & Cotana, F. 2015, Thermal-physics and energy performance of an innovative green roof system: The Cool-Green Roof, Solar Energy, 116, 337-356. https://doi.org/10.1016/j.solener.2015.03.049

Saha, D., Marble, S.C., Stewart, C., & Chandler, A. 2017, Preemergence and Postemergence Control of Artilleryweed (Pilea microphylla) in Container Nurseries and Landscapes. Weed Technol. 31, 574-581. https://doi.org/10.1017/wet.2017.29

Theodoridou, I., Karteris, M., Mallinis, G., Tsiros, E., & Karteris, A. 2017, Assessing the Benefits from Retrofitting Green Roofs in Mediterranean, Using Environmental Modelling, GIS and Very High Spatial Resolution Remote Sensing Data: The Example of Thessaloniki, Greece, Procedia Environmental Sciences, 38, 530-537. https://doi.org/10.1016/j.proenv.2017.03.117

Van Hooff, T., Blocken, B., Timmermans, H., & Hensen, J. 2016, Analysis of the predicted effect of passive climate adaptation measures on energy demand for cooling and heating in a residential building, Energy, 94, 811-820. https://doi.org/10.1016/j.energy.2015.11.036

Vijayaraghavan, K. 2016, Green roofs: a critical review on the role of components, benefits, limitations and trends. Renew Sustain Energy Rev, 57, 740–752. https://doi.org/10.1016/j.rser.2015.12.119

Willand, N., Ridley,I., & Pears, A. 2016, Relationship of thermal performance rating,

summer indoor temperatures and cooling energy use in 107 homes in

Melbourne, Australia, Energ Build. 113, 159-168. https://doi.org/10.1016/j.enbuild.2015.12.032

Yeomans, F., Alamada, D., & Martínez, R. 2013. Evaluación de los Efectos de Techo Verde en el Nivel de Confort Térmico en Vivienda de Interés Social [Evaluation of Green Roof Effects in the Thermal Comfort Level in Social Interest Housing], Cancún: México. http://www.laccei.org/LACCEI2013-Cancun/RefereedPapers/RP298.pdf

Yovane, K.S. 2003. Reacondicionamiento bioclimático de viviendas de segunda residencia en clima mediterráneo [Bioclimatic reconditioning of second homes in Mediterranean climate] (Doctoral thesis), Universidad Politécnica de Cataluña. Barcelona, España. https://www.tdx.cat/bitstream/handle/10803/6113/01PARTE1.pdf?sequence=3&isAllowed=y

Downloads

Published

24-07-2019

How to Cite

Campos Poma, K. ., & Valverde Flores, J. (2019). Contribution of the species Pilea microphylia in the thermal comfort of a house [Contribución de la especie Pilea microphylia en el confort térmico de una casa]. Journal of Energy &Amp; Environmental Sciences, 3(1), 1–11. Retrieved from https://www.journals.cincader.org/index.php/eesj/article/view/39

Most read articles by the same author(s)