Multigaussian and plurigaussian simulation to quantify uncertainty in estimating ore grades and rock types in copper deposits [Simulación multigaussiana y plurigaussiana para cuantificar incertidumbre en la estimación de leyes de mineral y tipos de rocas en yacimientos cupríferos]
DOI:
https://doi.org/10.32829/sej.v6i1.157Keywords:
Algorithms; categorical variables, usgsim; hierarchical simulation; PythonAbstract
The main objective of this researching was to quantify the uncertainty of a copper deposit using multigaussian simulation of grades of rock types. The developed algorithms for simulation of categorical variables, usgsim for continuous variables and algorithms programmed in Python 3.0. The dimensions of a block are 20x20x15m indexed 81x109x58 in xyz; making a total of 512 082 blocks. The results of the categorical simulations show that there is a probability (p.v. ≥ 0.8) of 19 987, 227 387 and 49 036 blocks for rock type 1, 2 and 3, respectively. Consequently, the quantified uncertainty for this threshold (0.8) is 20 %; representing 58 % of the blocks. On the other hand, the quantification of the uncertainty of continuous variables (associated with grades of Cu and Mo), not less than 90, 80 and 70 %, based on cut-off thresholds of variance per block, resulted in lithology One 353, 1900 and 7553 blocks with Cu grades, which represents 0.07, 0.37 and 1.49 % of the total blocks, respectively; a total of 24, 139 and 582 blocks with grades of Mo, representing 0.006, 0.027 and 0.114 % of the total blocks; for lithology Two there were 106, 648 and 2739 blocks with Cu grades, which represents 0.021, 0.127 and 0.535 % of the total blocks; a total of 32, 129 and 357 blocks with grades of Mo, which represents 0.006, 0.025 and 0.070 % of the total blocks; finally for lithology 3 there were 478, 2324 and 8804 blocks with Cu grades, which represents 0.093, 0.454 and 1.719 % of the total blocks; a total of 93, 355 and 982 blocks with grades of Mo, which represents 0.018, 0.069 and 0.192 % of the total blocks.
Finally, it is concluded that it was possible to quantify the uncertainty in the estimation of mineral grades and rock types in a copper deposit.
Downloads
References
Díaz Viera, M., & Casar González, R. 2009. Geoestadística aplicada: Métodos de simulación. México: Repositorio Institucional Universidad Nacional Autónoma de México.
Dunn, R. 2011. Plurigaussian Simulation of rocktypes using data from a gold mine in Western Australia. Australia: Edith Cowan University.
Gálvez, I., & Emery, X. 2012. Modelamiento geoestadístico de mineralogías de sulfuros en un yacimiento de cobre. Santiago de Chile: Repositorio Institucional Universidad de Chile.
Journel, A., & Huijbregts, C. 1978. Mining geostatistics. Academic Press, London.
Mery, N. 2016. Modelamiento geoestadístico de la incertidumbre en leyes y tipos de roca en un yacimiento ferrífero. Repositorio de tesis Universidad de Chile, 1-140.
Portilla Lazo, C. A. 2018. Modelo geoestadístico integrado a partir de la interpretación de datos de pozos para un campo petrolero ecuatoriano. Lima: Institutional Repository, Universidad Nacional Mayor de San Marcos.
Sucapuca Pacara, L. E. 2018. Evaluación Geoestadística de las Relaciones de Contacto entre Unidades Geológicas y Variogramas de sus Indicadores. Arequipa: Institutional Repository, Universidad Nacional San Agustín de Arequipa.
Yunsel, T., & Ersoy, A. 2013. Geological modeling of rock type domains in the Balya (Turkey) lead-zinc deposit using plurigaussian simulation. Central European Journal of Geosciences, 5(1) 77-89. https://doi.org/10.2478/s13533-012-0113-z. DOI: https://doi.org/10.2478/s13533-012-0113-z

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Journal of Sciences and Engineering

This work is licensed under a Creative Commons Attribution 4.0 International License.