Next-generation sequencing technology in relation to our understanding and tackling of Antimicrobial Resistance [Tecnología de secuenciación de próxima generación en relación con nuestra comprensión y lucha contra la resistencia a los antimicrobianos]

Authors

  • Roxana Guillén Departamento de Química Facultad de Ciencias. Universidad Nacional Agraria La Molina

Keywords:

Sequencing technology, Antimicrobial Resistance, comprehension

Abstract

Sequencing technologies have suffered over the last few years improvements in its performance, Next-generation Sequencing is being used more frequently to control infectious diseases, to know and anticipate antimicrobial resistance (AMR) and in surveillance controls against possible infectious outbreaks. Molecular assays used to detect pathogenic or antibiotic resistant agents take a lot of time and effort, and often enough information is not collected to make decisions. Next- generation sequencing appears to elucidate in the least time possible the whole DNA sequence and provide us with enough data to know resistance, virulence and typing that can be analyzed and a great help in research and decision making. NGS is a very promising technology, in order for it to be used extensively, requires the development of data analysis platforms and reduction of trials costs that still is very high for a massive use.

Downloads

Download data is not yet available.

References

Allix-Beguec, C., Fauville-Dufaux, M., Supply, P. 2008. Three year population-based evaluation of standardized mycobacterial interspersed repetitive-unit-variable-number tandem-repeat typing of Mycobacterium tuberculosis. J Clin Microbiol, 46, 1398-1406.

Besser, J., Carlenton, H., A., Gerner-Smith, P., Linsey, R., L. & Trees, E. 2018. Next-generation sequencing technologies and their application to the study and control of bacterial infections. Clinical Microbiology and Infection, 24, 335-341.

Cox, G., Sieron, A., King, A. M. et al. 2017. A common platform for antibiotic dereplication and adjuvant discovery. Cell Chem. Biol. 24, 98–109 .

Crofts, T., Gasparrini, A., J. & Dantas, G. 2017. Next-generation approaches to understand and combat the antibiotic resistome. Nature, 15, 422-434.

Daum, L. T., Fourie, P. B., Bhattacharyya, S. 2014. Next-Generation sequencing for identifying pyrazinamide resistance in Mycobacterium Tuberculosis. Clinical Infectious Disease, 58, 903-904.

Deuremberg, R., H., Bathroorn, E., Chlebowicz, M.,A. et al. 2016. Application of Next generation sequencing in clinical microbiology and infection prevention. Journal of Biotechnology ,243, 16-24.

Diaz-Torres, M. L., Villedieu, A., Nigel H. et al. 2006. Determining the antibiotic resistance potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol. Lett. 258, 257–262 .

Du, H., Chen, L., Tang, Y. W. & Kreiswirth, B. N. 2016. Emergence of the mcr-1 colistin resistance gene in carbapenem-resistant Enterobacteriaceae. Lancet Infect. Dis. 16, 287–288.

Gonzales, P. R., Pesesky, M. W., Bouley, R. et al. 2015. Synergistic, collaterally sensitive β-lactam combinations suppress resistance in MRSA. Nat. Chem. Biol. 11, 855–861 .

Harris, S. R., Torok, M. E., Cartwright, E. J. P. et al. 2013. Read and assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping outbreaks. Nature Biotechnology. 31,592-594.

Kluytmans-van den Bergh, M.F., Huizinga, P., Bonten, M.J. et al. 2016. Presence of mcr-1-positive Enterobacteriaceae in retail chicken meat but not in humans in the Netherlands since 2009. Euro Surveill. 21, 30149

Koser, C., Ellington, M., J. & Peacock, S., J. 2014. Whole-genome sequencing to control antimicrobial resistance. Cell Press, 30, 401-406

Lefterova, M. I., Suarez, C. J., Banaei, N. & Pinsky, B. 2015. Next-generation sequencing for infectious disease diagnosis and management. The Journal of Molecular Diagnostics, 17, 623-634.

Mather, A., E., Reid, S., W., J., Maskell D., J., et al. 2013. Distinguishable epidemics of multidrugresistant Salmonella Typhimurium DT104 in different hosts. Science, 341, 1514–1517.

Nikolayyeski, V., Kranzer, K., Niemann, S. & Drobriewski, F. 2016. Whole genome sequencing of Mycobacterium Tuberculosis for detection of recent transmission and tracing outbreaks: A systematic review. Tuberculosis, 98, 77-85.

Otto, M. 2017. Next-generation sequencing to monitor the spread of antimicrobial resistance. Genome Medicine, 9, 1-3.

Quainoo, S. J., Coolen, J. P. M., T.Van Hijum S. A. F. et al. 2017. Whole-Genome sequencing of bacterial pathogens: the future of nosocomial outbreak analysis. Clinical Microbiology Reviews, 30, 1048-1052.

Simen, BB., Simons, JF., Hullsiek, K., H. et al. 2009. Community programs for clinical research on AIDS: Low-abundance drug-resistance viral variants in chronically HIV-infected, antiretroviral treatment-naïve patients significantly impact treatment outcomes. J Infect Dis, 199, 693-701

Willmann, M., El-Hadidi, M., Huson, D.H. et al. 2015. Antibiotic selection pressure determination through sequence-based metagenomics. Antimicrob. Agents Chemother. 59,7335–7345.

Zhou, K., Lokate, M., Deurenberg, R.H. et al. 2015. Characterization of a CTX-M-15 producing Klebsiella pneumoniae outbreak strain assigned to a novel Sequence Type(1427). Front. Microbiology. 6, 1250.

Downloads

Published

18-11-2019

How to Cite

Guillén, R. (2019). Next-generation sequencing technology in relation to our understanding and tackling of Antimicrobial Resistance [Tecnología de secuenciación de próxima generación en relación con nuestra comprensión y lucha contra la resistencia a los antimicrobianos]. Journal of Sciences and Engineering, 3(1), 1–7. Retrieved from https://www.journals.cincader.org/index.php/sej/article/view/57